Inequalities for Cyclic Functions

Horst Alzer
Morsbacher Strasse 10, 51545 Waldbröl, Germany E-mail: alzer@wmax03.mathematik.uni-wuerzburg.de

Stephan Ruscheweyh

Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany
E-mail: ruscheweyh@mathematik.uni-wuerzburg.de

and

Luis Salinas

Departamento de Informática, Universidad Técnica F. Santa María, Valparaíso, Chile
E-mail: lsalinas@inf.utfsm.cl

Communicated by Tamás Erdélyi

Received January 4, 2000; accepted June 14, 2001

The nth cyclic function is defined by

$$
\varphi_{n}(z)=\sum_{v=0}^{\infty} \frac{z^{n v}}{(n v)!} \quad(z \in \mathbb{C}, 2 \leqslant n \in \mathbb{N}) .
$$

We prove that if k is an integer with $1 \leqslant k \leqslant n-1$, then

$$
\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\alpha}<\varphi_{n}(x)<\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\beta}
$$

holds for all positive real numbers x with the best possible constants

$$
\alpha=1 \quad \text { and } \quad \beta=\binom{2 n-k}{n} .
$$

© 2001 Academic Press
Key Words: inequalities; cyclic functions; gamma function.

1. INTRODUCTION

The nth cyclic function $\varphi_{n}(2 \leqslant n \in \mathbb{N})$ is defined as the solution of the differential equation

$$
y^{(n)}(z)=y(z), \quad y(0)=1, \quad y^{\prime}(0)=\cdots=y^{(n-1)}(0)=0
$$

that is, as the entire function

$$
\varphi_{n}(z)=\sum_{v=0}^{\infty} \frac{z^{n v}}{(n v)!}=\frac{1}{n} \sum_{v=0}^{n-1} \exp \left(\varepsilon_{n}^{v} z\right) \quad\left(\varepsilon_{n}=e^{2 \pi i / n}, \quad z \in \mathbb{C}\right) .
$$

For $n=2$ we obtain the classical hyperbolic functions

$$
\varphi_{2}(z)=\cosh z \quad \text { and } \quad \varphi_{2}^{\prime}(z)=\sinh z .
$$

The cyclic functions $\varphi_{n}, \varphi_{n}^{\prime}, \ldots, \varphi_{n}^{(n-1)}$ have found the attention of several authors who established many interesting properties of these functions; we refer to [1] and the references therein.

This paper has been inspired by the known inequalities

$$
\begin{equation*}
\frac{\sinh x}{x}<\cosh x<\left(\frac{\sinh x}{x}\right)^{3} \quad(x>0) . \tag{1.1}
\end{equation*}
$$

Simple proofs of (1.1) are given in [3] and [4]. Lazarević [3, p. 270] pointed out that in the second inequality of (1.1) the exponent 3 is best possible, that is, this inequality is not true for all $x>0$, if we replace 3 by a smaller constant.

Double-inequality (1.1) leads to inequalities involving the arithmetic, geometric, and logarithmic means of two positive real numbers. Indeed, setting $x=\frac{1}{2} \log \frac{b}{a} \quad(b>a>0)$ in (1.1), and multiplying by $\sqrt{a b}$, we obtain

$$
L(a, b)<A(a, b)<(L(a, b))^{3} /(G(a, b))^{2},
$$

where $A(a, b)=\frac{1}{2}(a+b), G(a, b)=\sqrt{a b}$, and $L(a, b)=\frac{a-b}{\log a-\log b}$. Related results can be found in [2, Chap. VI].

Páles [4,5] provided other interesting applications of inequalities (1.1). He showed that they play a role in establishing inequalities for differences of powers and for two-parameter mean value families.

Since (1.1) can be written as

$$
\begin{equation*}
\frac{1}{x} \varphi_{2}^{\prime}(x)<\varphi_{2}(x)<\left(\frac{1}{x} \varphi_{2}^{\prime}(x)\right)^{3} \quad(x>0) \tag{1.2}
\end{equation*}
$$

it is natural to look for an extension of (1.2) involving φ_{n} and its derivatives. It is the aim of this paper to present such an extension. More precisely, we answer the following question:

Let n and k be integers with $1 \leqslant k \leqslant n-1$. What is the largest number $\alpha=\alpha(n, k)$ and what is the smallest number $\beta=\beta(n, k)$ such that the inequalities

$$
\begin{equation*}
\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\alpha}<\varphi_{n}(x)<\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\beta} \tag{1.3}
\end{equation*}
$$

hold for all positive real numbers x ?

2. A DISCRETE INEQUALITY

In order to determine the best possible values α and β in (1.3) we need the following discrete inequality which might be of independent interest.

Theorem 1. Let u, v, x, and y be nonnegative integers such that $(u, v) \neq(0,0)$ and $1 \leqslant y \leqslant x-1$, and let

$$
\begin{equation*}
F(u, v, x, y)=\frac{(x+y)!}{(u+x+y)!v!}-\frac{x!y!}{(u+x)!(v+y)!} . \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
(u+x) F(u, v, x, y)+(v+x) F(v, u, x, y)>0 . \tag{2.2}
\end{equation*}
$$

Using Euler's gamma function to define

$$
\begin{equation*}
a!=\Gamma(a+1) \tag{2.3}
\end{equation*}
$$

for nonnegative real numbers a, it is likely that inequality (2.2) holds for all real numbers $u, v, y \geqslant 0$ and $x \geqslant 1$. In fact, a detailed analysis of our proof of Theorem 1 reveals that (2.2) is valid at least for large parts of this latter range.

Proof. In what follows we use the abbreviations

$$
\begin{gathered}
H(u, v, x, y)=(u+x) F(u, v, x, y)+(v+x) F(v, u, x, y), \\
\gamma(s)=\Gamma(s+1), \quad \text { and } \quad \psi(s)=\Psi(s+1)=\frac{\Gamma^{\prime}(s+1)}{\Gamma(s+1)} \quad(0 \leqslant s \in \mathbb{R}),
\end{gathered}
$$

and we employ freely the extension of $F(u, v, x, y)$ to nonnegative real numbers via (2.3). We have to show that

$$
\begin{equation*}
H(u, v, x, y)>0 . \tag{2.4}
\end{equation*}
$$

Since $H(u, v, x, y)$ is symmetric in u and v, it suffices to establish (2.4) for $v \geqslant u$. We consider three cases.

Case 1: $u=v$. Since ψ^{\prime} is strictly decreasing on $[0, \infty)$, we conclude from the integral representation

$$
\begin{aligned}
& H(u, u, x, y) \\
& \qquad=\frac{2(u+x) \gamma(x) \gamma(x+y)}{\gamma(u+x) \gamma(u+x+y)} \int_{0}^{y} \frac{\gamma(s) \gamma(u+x+s)}{\gamma(u+s) \gamma(x+s)} \int_{s}^{u+s}\left[\psi^{\prime}(t)-\psi^{\prime}(t+x)\right] d t d s
\end{aligned}
$$

that

$$
\begin{equation*}
H(u, u, x, y) \geqslant 0, \tag{2.5}
\end{equation*}
$$

with equality holding if and only if $u=0$.
Case 2: $v \geqslant 2 u+1$. Let

$$
S(u, x, y)=\frac{(u+x-1)(x+y)!}{(u+x+y)!}+\frac{u!x!y!}{(u+x)!(u+y)!} .
$$

Then we have

$$
\begin{align*}
& v!H(u, v, x, y)-u!F(u, u, x, y) \tag{2.6}\\
& \quad>S(u, x, y)-\frac{v!x!y!}{(v+y)!}\left[\frac{1}{(u+x-1)!}+\frac{(v+y)!}{(u+y)!(v+x-1)!}\right] .
\end{align*}
$$

A simple calculation yields

$$
\begin{equation*}
S(u, x, y) \geqslant \frac{u!x!y!}{(u+x-1)!(u+y)!}, \tag{2.7}
\end{equation*}
$$

so that (2.6) and (2.7) lead to

$$
\begin{align*}
& v!H(u, v, x, y)-u!F(u, u, x, y) \tag{2.8}\\
& \quad>x!y!\left[\frac{u!}{(u+x-1)!(u+y)!}\right. \\
& \left.\quad-\frac{v!}{(v+y)!}\left(\frac{1}{(u+x-1)!}+\frac{(v+y)!}{(u+y)!(v+x-1)!}\right)\right] .
\end{align*}
$$

Since $y \leqslant x-1$ and $2 u+1 \leqslant v$, we get
(2.9) $\quad \frac{(v+y)!}{(u+y)!(v+x-1)!} \leqslant \frac{1}{(u+x-1)!} \quad$ and $\quad \frac{2 v!}{(v+y)!} \leqslant \frac{u!}{(u+y)!}$.

Using (2.9) we obtain
(2.10)

$$
\begin{aligned}
\frac{v!}{(v+y)!}\left(\frac{1}{(u+x-1)!}+\frac{(v+y)!}{(u+y)!(v+x-1)!}\right) & \leqslant \frac{v!}{(v+y)!} \frac{2}{(u+x-1)!} \\
& \leqslant \frac{u!}{(u+x-1)!(u+y)!}
\end{aligned}
$$

From (2.8), (2.10), and (2.5) we conclude

$$
H(u, v, x, y)>\frac{u!}{v!} F(u, u, x, y)=\frac{u!}{2 v!} \frac{H(u, u, x, y)}{u+x} \geqslant 0 .
$$

Case 3: $0<u<v \leqslant 2 u$. We define

$$
G(t)=G_{u, v, x, y}(t)=\frac{\gamma(x+t) \gamma(y-t)}{\gamma(u+x+t) \gamma(v+y-t)} \quad(-x \leqslant t \leqslant y) .
$$

Since

$$
G_{v, u, x, y}(t)=G_{u, v, x, y}(y-x-t),
$$

we have the representation

$$
\begin{align*}
H(u, v, x, y) & =\left[(u+x) G_{u, v, x, y}(t)+(v+x) G_{v, u, x, y}(t)\right]_{t=0}^{t=y} \tag{2.11}\\
& =\left[(u+x) G_{u, v, x, y}(t)-(v+x) G_{u, v, x, y}(t-x)\right]_{t=0}^{t=y} \\
& =\left[\left[(u+v+x-s) G_{u, v, x, y}\left(t-\frac{v-s}{v-u} x\right)\right]_{s=u}^{s=v}\right]_{t=0}^{t=y} \\
& =\int_{0}^{y} \int_{u}^{v}\left\{-G^{\prime}(\tau)+\left(\frac{x(u+x)}{v-u}+\frac{x(v-s)}{v-u}\right) G^{\prime \prime}(\tau)\right\} d s d t,
\end{align*}
$$

where

$$
\tau=t-\frac{(v-s) x}{v-u} \in[-x, y] .
$$

Direct computation yields

$$
\begin{equation*}
G^{\prime \prime}(t)=\left(X^{2}+Y\right) G(t), \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\frac{G^{\prime}(t)}{G(t)} \tag{2.13}
\end{equation*}
$$

and
(2.14) $Y=\left(\frac{G^{\prime}(t)}{G(t)}\right)^{\prime}=\psi^{\prime}(x+t)-\psi^{\prime}(x+t+u)+\psi^{\prime}(y-t)-\psi^{\prime}(y-t+v)$.

Since ψ^{\prime} is decreasing, we conclude from (2.14) that $Y \geqslant 0$, so that (2.12) leads to

$$
\begin{equation*}
G^{\prime \prime}(t) \geqslant 0 . \tag{2.15}
\end{equation*}
$$

From (2.11) and (2.15) we get the estimate

$$
H(u, v, x, y) \geqslant \int_{0}^{y} \int_{u}^{v}\left\{-G^{\prime}(\tau)+\frac{x(u+x)}{v-u} G^{\prime \prime}(\tau)\right\} d s d t .
$$

Thus, to prove (2.4) it suffices to show that for $\tau \in[-x, y]$:

$$
\begin{equation*}
0<-G^{\prime}(\tau)+\frac{x(u+x)}{v-u} G^{\prime \prime}(\tau)=m(\tau), \text { say. } \tag{2.16}
\end{equation*}
$$

Let $A=\frac{x(u+x)}{v-u}$, and let X and Y be as given in (2.13) and (2.14) (with τ instead of t). Then we have

$$
\begin{align*}
m(\tau) & \frac{A}{G(\tau)}+\frac{1}{4} \tag{2.17}\\
& =\left(A X-\frac{1}{2}\right)^{2}+A^{2} Y \\
& \geqslant A^{2} Y \\
& =\left(\frac{x(u+x)}{v-u}\right)^{2}\left[\psi^{\prime}(x+\tau)-\psi^{\prime}(x+\tau+u)+\psi^{\prime}(y-\tau)-\psi^{\prime}(y-\tau+v)\right] \\
& =P_{u, v, x, y}(\tau), \text { say. }
\end{align*}
$$

We have $u<v \leqslant 2 u$ and $y<x$. Since ψ^{\prime} is decreasing and $\psi^{\prime \prime}$ is increasing on $[0, \infty)$, we get

$$
\begin{align*}
P_{u, v, x, y}(\tau) & \geqslant\left(\frac{x(u+x)}{u}\right)^{2}\left[\psi^{\prime}(x+\tau)-\psi^{\prime}(x+\tau+u)+\psi^{\prime}(x-\tau)-\psi^{\prime}(x-\tau+u)\right] \tag{2.1.}\\
& =Q_{u, x}(\tau), \text { say. }
\end{align*}
$$

The function $\tau \mapsto Q_{u, x}(\tau)$ is even on $[-x, x]$, and since $\psi^{\prime \prime \prime}$ is decreasing on $[0, \infty)$, we verify that it is also convex. Hence, it attains its minimum at $\tau=0$. This leads to

$$
\begin{align*}
Q_{u, x}(\tau) & \geqslant Q_{u, x}(0) \tag{2.19}\\
& =2\left(\frac{x(u+x)}{u}\right)^{2}\left[\psi^{\prime}(x)-\psi^{\prime}(x+u)\right] \\
& =2\left(\frac{x(u+x)}{u}\right)^{2} \sum_{k=1}^{\infty}\left(\frac{1}{(x+k)^{2}}-\frac{1}{(x+k+u)^{2}}\right) \\
& \geqslant 2\left(\frac{x(u+x)}{u}\right)^{2}\left(\frac{1}{(x+1)^{2}}-\frac{1}{(x+1+u)^{2}}\right) \\
& \geqslant 2 \frac{x^{2}}{(x+1)^{2}} \\
& >\frac{1}{4}
\end{align*}
$$

From (2.17)-(2.19) we conclude the validity of (2.16) for $\tau \in[-x, y]$. This completes the proof of Theorem 1.

3. MAIN RESULT

We are now in a position to prove the following extension of inequality (1.2).

Theorem 2. Let n and k be integers with $1 \leqslant k \leqslant n-1$. Then we have for all positive real numbers x :

$$
\begin{equation*}
\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\alpha}<\varphi_{n}(x)<\left(\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}\right)^{\beta}, \tag{3.1}
\end{equation*}
$$

with the best possible constants

$$
\alpha=1 \quad \text { and } \quad \beta=\binom{2 n-k}{n}
$$

Proof. The left-hand inequality of (3.1) with $\alpha=1$ is an immediate consequence of the identity

$$
\varphi_{n}(x)-\frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}=(n-k)!\sum_{v=1}^{\infty}\left(\prod_{\mu=1}^{n-k}\left(1+\frac{n v}{\mu}\right)-1\right) \frac{x^{n v}}{(n(v+1)-k)!} .
$$

To prove the second inequality of (3.1) with $\beta=\binom{2 n-k}{n}$, we define

$$
f(x)=\beta \log (n-k)!+\beta \log \varphi_{n}^{(k)}(x)-\beta(n-k) \log x-\log \varphi_{n}(x) .
$$

We have to show that $f(x)>0$ for $x>0$. Since $\lim _{t \rightarrow 0} f(t)=0$, it is sufficient to prove for $x>0$:

$$
f^{\prime}(x)=\beta \frac{\varphi_{n}^{(k+1)}(x)}{\varphi_{n}^{(k)}(x)}-\frac{\beta(n-k)}{x}-\frac{\varphi_{n}^{\prime}(x)}{\varphi_{n}(x)}>0,
$$

or, equivalently,

$$
\begin{equation*}
\beta x \varphi_{n}^{(n)}(x) \varphi_{n}^{(k+1)}(x)-\beta(n-k) \varphi_{n}^{(n)}(x) \varphi_{n}^{(k)}(x)-x \varphi_{n}^{\prime}(x) \varphi_{n}^{(k)}(x)>0 . \tag{3.2}
\end{equation*}
$$

Expanding the expression on the left-hand side into a power series around 0 , inequality (3.2) can be written as

$$
\begin{equation*}
\sum_{m=3}^{\infty} \sum_{v=1}^{m-1} \frac{a_{v}+a_{m-v}}{2} x^{n m-k}>0, \tag{3.3}
\end{equation*}
$$

where

$$
a_{v}=a_{v}(m, n, k)=\frac{n v \beta}{(n(m-v-1))!(n(v+1)-k)!}-\frac{1}{(n v-k)!(n(m-v)-1)!} .
$$

If we set

$$
u=n(v-1), \quad v=n(m-v-1), \quad \text { and } \quad y=n-k,
$$

then we obtain

$$
\begin{equation*}
(u+n) F(u, v, n, y)+(v+n) F(v, u, n, y)=\left(a_{v}+a_{m-v}\right) n!(n-k)!, \tag{3.4}
\end{equation*}
$$

where F is given in (2.1). Since $m \geqslant 3,1 \leqslant v \leqslant m-1$, and $1 \leqslant k \leqslant n-1$ imply $u \geqslant 0, v \geqslant 0,(u, v) \neq(0,0)$, and $1 \leqslant y \leqslant n-1$, we conclude from Theorem 1 and (3.4) that

$$
a_{v}+a_{m-v}>0 \quad(v=1, \ldots, m-1)
$$

which implies (3.3).
It remains to show that the constants $\alpha=1$ and $\beta=\binom{2 n-k}{n}$ are best possible in (3.1). Let

$$
\begin{equation*}
g(x)=\frac{\log \varphi_{n}(x)}{\log \frac{(n-k)!\varphi_{n}^{(k)}(x)}{x^{n-k}}} ; \tag{3.5}
\end{equation*}
$$

then double-inequality (3.1) is equivalent to

$$
\begin{equation*}
\alpha<g(x)<\beta \quad(x>0) . \tag{3.6}
\end{equation*}
$$

We have

$$
g(x)=\frac{\log (1+s(x))}{\log (1+t(x))}
$$

with

$$
s(x)=\sum_{v=1}^{\infty} \frac{x^{n v}}{(n v)!} \quad \text { and } \quad t(x)=(n-k)!\sum_{v=1}^{\infty} \frac{x^{n v}}{(n v+n-k)!} .
$$

Hence, we obtain

$$
\begin{equation*}
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{s^{\prime}(x)}{t^{\prime}(x)}=\binom{2 n-k}{n} \tag{3.7}
\end{equation*}
$$

If $1 \leqslant v \leqslant n-1$, then we have $\lim _{x \rightarrow \infty} \exp \left(\left(\varepsilon_{n}^{v}-1\right) x\right)=0$. This implies

$$
\lim _{x \rightarrow \infty} \frac{\varphi_{n}^{(r)}(x)}{\varphi_{n}^{(r-1)}(x)}=\lim _{x \rightarrow \infty} \frac{1+\sum_{v=1}^{n-1} \exp \left(\left(\varepsilon_{n}^{v}-1\right) x\right) \varepsilon_{n}^{v r}}{1+\sum_{v=1}^{n-1} \exp \left(\left(\varepsilon_{n}^{v}-1\right) x\right) \varepsilon_{n}^{v(r-1)}}=1 \quad(r=1, \ldots, n),
$$

which leads to

$$
\begin{equation*}
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{\varphi_{n}^{\prime}(x)}{\varphi_{n}(x)} \frac{1}{\frac{\varphi_{n}^{(k+1)}(x)}{\varphi_{n}^{(k)}(x)}-\frac{n-k}{x}}=1 . \tag{3.8}
\end{equation*}
$$

From (3.6)-(3.8) we conclude that in (3.1) the constants $\alpha=1$ and $\beta=\binom{2 n-k}{n}$ are sharp, which completes the proof of Theorem 2.

Remark. Numerous computer calculations have led to the conjecture that the function g, as defined in (3.5), is strictly decreasing on $[0, \infty)$.

ACKNOWLEDGMENTS

St. Ruscheweyh and L. Salinas have received partial support by FONDECYT, Grants 1980015 and 798001. L. Salinas also received support from UTFSM, Grant 971222.

REFERENCES

1. H. Alzer, "Die Nullstellen der Hyperbelfunktionen höherer Ordnung," Dissertation, Bonn, 1983.
2. P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, "Means and Their Inequalities," Reidel, Dordrecht, 1988.
3. D. S. Mitrinović, "Analytic Inequalities," Springer-Verlag, New York, 1970.
4. Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), 271-281.
5. Zs. Páles, Comparison of two variable homogeneous means, in "General Inequalities 6, Proc. 6th Int. Conf., Oberwolfach, Germany, 1990," pp. 59-70, Birkhäuser, Basel, 1992.
